825 research outputs found

    Realisation of a programmable two-qubit quantum processor

    Full text link
    The universal quantum computer is a device capable of simulating any physical system and represents a major goal for the field of quantum information science. Algorithms performed on such a device are predicted to offer significant gains for some important computational tasks. In the context of quantum information, "universal" refers to the ability to perform arbitrary unitary transformations in the system's computational space. The combination of arbitrary single-quantum-bit (qubit) gates with an entangling two-qubit gate is a gate set capable of achieving universal control of any number of qubits, provided that these gates can be performed repeatedly and between arbitrary pairs of qubits. Although gate sets have been demonstrated in several technologies, they have as yet been tailored toward specific tasks, forming a small subset of all unitary operators. Here we demonstrate a programmable quantum processor that realises arbitrary unitary transformations on two qubits, which are stored in trapped atomic ions. Using quantum state and process tomography, we characterise the fidelity of our implementation for 160 randomly chosen operations. This universal control is equivalent to simulating any pairwise interaction between spin-1/2 systems. A programmable multi-qubit register could form a core component of a large-scale quantum processor, and the methods used here are suitable for such a device.Comment: 7 pages, 4 figure

    Conservation laws for invariant functionals containing compositions

    Full text link
    The study of problems of the calculus of variations with compositions is a quite recent subject with origin in dynamical systems governed by chaotic maps. Available results are reduced to a generalized Euler-Lagrange equation that contains a new term involving inverse images of the minimizing trajectories. In this work we prove a generalization of the necessary optimality condition of DuBois-Reymond for variational problems with compositions. With the help of the new obtained condition, a Noether-type theorem is proved. An application of our main result is given to a problem appearing in the chaotic setting when one consider maps that are ergodic.Comment: Accepted for an oral presentation at the 7th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2007), to be held in Pretoria, South Africa, 22-24 August, 200

    Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion

    Full text link
    While being invented for precision measurement of single atomic transitions, frequency combs have also become a versatile tool for broadband spectroscopy in the last years. In this paper we present a novel and simple approach for broadband spectroscopy, combining the accuracy of an optical fiber-laser-based frequency comb with the ease-of-use of a tunable external cavity diode laser. This scheme enables broadband and fast spectroscopy of microresonator modes and allows for precise measurements of their dispersion, which is an important precondition for broadband optical frequency comb generation that has recently been demonstrated in these devices. Moreover, we find excellent agreement of measured microresonator dispersion with predicted values from finite element simulations and we show that tailoring microresonator dispersion can be achieved by adjusting their geometrical properties

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.0∗10−137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.7∗10−157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure

    Entanglement of spin waves among four quantum memories

    Get PDF
    Quantum networks are composed of quantum nodes that interact coherently by way of quantum channels and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a `web' for connecting quantum processors for computation and communication, as well as a `simulator' for enabling investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and of efficiently transferring stored entanglement into quantum channels for distribution across the network. While such capabilities have been demonstrated for diverse bipartite systems (i.e., N=2 quantum systems), entangled states with N > 2 have heretofore not been achieved for quantum interconnects that coherently `clock' multipartite entanglement stored in quantum memories to quantum channels. Here, we demonstrate high-fidelity measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of atomic entanglement to four photonic quantum channels; and the characterization of the full quadripartite entanglement by way of quantum uncertainty relations. Our work thereby provides an important tool for the distribution of multipartite entanglement across quantum networks.Comment: 4 figure

    Independent Origins of Cultivated Coconut (Cocos nucifera L.) in the Old World Tropics

    Get PDF
    As a portable source of food, water, fuel, and construction materials, the coconut (Cocos nucifera L.) played a fundamental role in human migrations and the development of civilization across the humid tropics. Here we investigated the coconut's domestication history and its population genetic structure as it relates to human dispersal patterns. A sample of 1,322 coconut accessions, representing the geographical and phenotypic diversity of the species, was examined using ten microsatellite loci. Bayesian analyses reveal two highly genetically differentiated subpopulations that correspond to the Pacific and Indo-Atlantic oceanic basins. This pattern suggests independent origins of coconut cultivation in these two world regions, with persistent population structure on a global scale despite long-term human cultivation and dispersal. Pacific coconuts show additional genetic substructure corresponding to phenotypic and geographical subgroups; moreover, the traits that are most clearly associated with selection under human cultivation (dwarf habit, self-pollination, and “niu vai” fruit morphology) arose only in the Pacific. Coconuts that show evidence of genetic admixture between the Pacific and Indo-Atlantic groups occur primarily in the southwestern Indian Ocean. This pattern is consistent with human introductions of Pacific coconuts along the ancient Austronesian trade route connecting Madagascar to Southeast Asia. Admixture in coastal east Africa may also reflect later historic Arab trading along the Indian Ocean coastline. We propose two geographical origins of coconut cultivation: island Southeast Asia and southern margins of the Indian subcontinent
    • …
    corecore